Alcohol’s Role in Gastrointestinal Tract Disorders

CHRISTIANE BODE, PH.D., AND J. CHRISTIAN BODE, M.D.

When alcohol is consumed, the alcoholic beverages first pass through the various segments of the gastrointestinal (GI) tract. Accordingly, alcohol may interfere with the structure as well as the function of GI-tract segments. For example, alcohol can impair the function of the muscles separating the esophagus from the stomach, thereby favoring the occurrence of heartburn. Alcohol-induced damage to the mucosal lining of the esophagus also increases the risk of esophageal cancer. In the stomach, alcohol interferes with gastric acid secretion and with the activity of the muscles surrounding the stomach. Similarly, alcohol may impair the muscle movement in the small and large intestines, contributing to the diarrhea frequently observed in alcoholics. Moreover, alcohol inhibits the absorption of nutrients in the small intestine and increases the transport of toxins across the intestinal walls, effects that may contribute to the development of alcohol-related damage to the liver and other organs. Key words: ethanol metabolism; AODE (alcohol and other drug effects); mouth; esophagus; stomach; intestine; gastric mucosa; intestinal mucosa; gastric lesion; gastric acid; gastrointestinal function; gastrointestinal absorption; muscle; neoplastic disease; toxins; free radicals; etiology; literature review

Among the many organ systems that mediate alcohol’s effects on the human body and its health, the gastrointestinal (GI) tract plays a particularly important part. Several processes underlie this role. First, the GI tract is the site of alcohol absorption into the bloodstream and, to a lesser extent, of alcohol breakdown and production. (For more information on alcohol absorption, metabolism, and production in the GI tract, see sidebar, pp. 82–83.) Second, the direct contact of alcoholic beverages with the mucosa1 that lines the upper GI tract can induce numerous metabolic and functional changes. These alterations may lead to marked mucosal damage, which can result in a broad spectrum of acute and chronic diseases, such as acute gastrointestinal bleeding (from lesions in the stomach or small intestine) and diarrhea. Third, functional changes and mucosal damage in the gut disturb the digestion of other nutrients as well as their assimilation into the body, thereby contributing to the malnutrition and weight loss frequently observed in alcoholics. Fourth, alcohol-induced mucosal injuries—especially in the upper small intestine—allow large molecules, such as endotoxin and other bacterial toxins, to pass more easily into the blood or lymph. These toxic substances can have deleterious effects on the liver and other organs.

Over the past three decades, researchers have made major progress toward understanding alcohol’s many acute and chronic effects on GI-tract function and structure.

This article reviews some of these findings, focusing primarily on insights gained during the past 10 years. (For extensive reviews of the developments

CHRISTIANE BODE, PH.D., is professor and chief of the Section of Physiology of Nutrition (140), Hohenheim University, Stuttgart, Germany.

J. CHRISTIAN BODE, M.D., is professor of medicine and chief of the Section of Gastroenterology, Hepatology and Endocrinology in the Department of Internal Medicine, Robert-Bosch-Krankenhaus, Stuttgart, Germany.

1For a definition of this and other technical terms used in this article, see the central glossary, pp. 93–96.
in this field up to the early 1980’s, see Beazell and Ivy 1940; Bode 1980).

THE GI TRACT—AN OVERVIEW

The GI tract’s functions are to physically and chemically break down ingested food, allow the absorption of nutrients into the bloodstream, and excrete the waste products generated. The GI tract can be viewed as one continuous tube extending from the mouth to the anus (figure 1), which is subdivided into different segments with specific functions.

In the mouth, or oral cavity, the teeth mechanically grind the food into small pieces. Moreover, saliva excreted by the salivary glands initiates the food’s chemical degradation. From the oral cavity, the food passes through the throat (i.e., pharynx) into the esophagus. The coordinated contraction and relaxation of the muscles surrounding the esophagus propels the food into the stomach.

In the stomach, the chemical degradation of the food continues with the help of gastric acid and various digestive enzymes. Excessive gastric acid production can irritate the mucosa, causing gastric pain, and result in the development of gastric ulcers. Two bands of muscle fibers (i.e., sphincters) close off the stomach to the esophagus and the intestine. Weakness of the sphincter separating the stomach from the esophagus allows the stomach content to flow back into the esophagus. This process, which is called gastroesophageal reflux, can lead to heartburn as well as inflammation (i.e., reflux esophagitis) and even to the development of ulcers in the lower part of the esophagus.

From the stomach, the food enters the small intestine, which is divided into three segments: the duodenum, the jejunum, and the ileum. Like the esophagus and stomach, the intestine is surrounded by layers of muscles, the rhythmic movements of which help mix the food mass and push it along the GI tract. The intestine’s inner mucosal surface is covered with small projections called villi, which increase the intestinal surface area (figure 2). As the food mass moves through the small intestine, digestive enzymes secreted by the intestinal cells complete the chemical degradation of nutrients into simple molecules that can be absorbed through the intestinal wall into the bloodstream. What finally remains in the intestine are primarily indigestible waste products. These products progress into the large intestine, where the waste is compacted and prepared for excretion through the anus. Like the small intestine, the large intestine can be divided into three segments: the cecum; the colon, which constitutes about 80 percent of the large intestine; and the rectum. The following sections review alcohol’s effect on the different regions of the GI tract.

THE ORAL CAVITY AND THE ESOPHAGUS

The oral cavity, pharynx, esophagus, and stomach are exposed to alcohol immediately after its ingestion. Thus, alcoholic beverages are almost undiluted when they come in contact with the mucosa of these structures. It is therefore not surprising that mucosal injuries (i.e., lesions) occur quite frequently in people who drink large amounts of alcohol.

Chronic alcohol abuse damages the salivary glands and thus interferes with saliva secretion. In alcoholics this damage commonly manifests itself as an enlargement (i.e., hypertrophy) of the parotid gland, although the mechanisms leading to this condition are unknown. Moreover, alcoholics may suffer from inflammation of the tongue (i.e., glossitis) and the mouth (i.e., stomatitis). It is unclear, however, whether these changes result from poor nutrition or reflect alcohol’s direct effect on the mucosa. Finally, chronic alcohol abuse increases the incidence of tooth decay, gum disease, and loss of teeth (Kranzler et al. 1990).

Alcohol consumption can affect the esophagus in several ways. For example, alcohol distinctly impairs esophageal motility, and even a single drinking episode (i.e., acute alcohol consumption) significantly weakens the lower esophageal sphincter. As a result, gastroesophageal reflux may occur, and the esophagus’ ability to clear the refluxed gastric acid may be reduced. Both of these factors promote the occurrence of heartburn. Moreover, some alcoholics exhibit an abnormality of esophageal motility known as a
“nutcracker esophagus,” which mimics symptoms of coronary heart disease (Bode and Bode 1992).

Chronic alcohol abuse leads to an increased incidence not only of heartburn but also of esophageal mucosal inflammation (i.e., esophagitis) and other injuries that may induce mucosal defects (i.e., esophagitis with or without erosions). In addition, alcoholics make up a significant proportion of patients with Barrett’s esophagus. This condition, which occurs in 10 to 20 percent of patients with symptomatic gastroesophageal reflux disease (Wienbeck and Berges 1985), is characterized by changes in the cell layer lining the esophagus (i.e., the epithelium) that lead to abnormal acid production. A diagnosis of Barrett’s esophagus is an important indicator of an increased risk of esophageal cancer, because in some patients the altered epithelial cells become cancerous.

Another condition affecting alcoholics is Mallory-Weiss syndrome, which is characterized by massive bleeding caused by tears in the mucosa at the junction of the esophagus and the stomach. The syndrome accounts for 5 to 15 percent of all cases of bleeding in the upper GI tract. In 20 to 50 percent of all patients, the disorder is caused by increased gastric pressure resulting from repeated retching and vomiting following excessive acute alcohol consumption (Bode and Bode 1992).

The Stomach

Both acute and chronic alcohol consumption can interfere with stomach functioning in several ways. For example, alcohol—even in relatively small doses—can alter gastric acid secretion, induce acute gastric mucosal injury, and interfere with gastric and intestinal motility.

Gastric Acid Secretion

Analyses in several animal species found that acute alcohol administration by mouth or by direct infusion into the stomach (i.e., intragastrically) or the blood (i.e., intravenously) can affect gastric acid secretion (Chari et al. 1993). The secretory response of the stomach varies considerably, however, depending on the species studied and the alcohol concentrations used. In healthy, nonalcoholic humans, intravenous alcohol administration of 0.3 to 0.5 grams per kilogram (g/kg) body weight or intragastric infusion of alcohol solutions with concentrations of up to 5 percent stimulate gastric acid secretion, whereas intragastric infusion of higher concentrations has either no effect or a mildly inhibitory one (Chari et al. 1993). Accordingly, alcoholic beverages with a low alcohol content (e.g., beer and wine) strongly increase gastric acid secretion and the release of gastrin, the gastric hormone that induces acid secretion. In contrast, beverages with a higher alcohol content (e.g., whisky and cognac) stimulate neither gastric acid secretion nor gastrin release.

The mechanisms underlying the effects of alcoholic beverages on gastric acid secretion have not yet been identified. Alcohol may interact directly with the gastric mucosa (i.e., topical stimulation); or, it may act through a more general mechanism affecting the release of hormones and the regulation of nerve functions involved in acid secretion (Chari et al. 1993). Moreover, researchers have shown that after beer consumption, gastric acid secretion also is stimulated by by-products of the fermentation process other than alcohol (Chari et al. 1993).

Chronic alcohol abuse also affects gastric function. Thus, alcoholics have a significantly higher incidence of shrinkage (i.e., atrophy) of the gastric mucosa and decreased gastric secretary...
capacity than do healthy control subjects of comparable age and sex (Bode and Bode 1992). The resulting decrease in acid production reduces the stomach’s ability to destroy the bacteria that enter with food and thus favors the colonization of the upper small intestine with potentially harmful microorganisms. Abstinence, however, can at least partly reverse these changes.

Acute Gastric Mucosal Injury

Researchers have known for more than 100 years that alcohol abuse can cause mucosal inflammation (for a review, see Beazell and Ivy 1940). In addition, alcohol abuse is an important cause of bleeding (i.e., hemorrhagic) gastric lesions that can destroy parts of the mucosa. Although low or moderate alcohol doses do not cause such damage in healthy subjects, even a single episode of heavy drinking can induce mucosal inflammation and hemorrhagic lesions. Nonsteroidal anti-inflammatory drugs (e.g., aspirin and ibuprofen) may aggravate the development of alcohol-induced acute gastric lesions.

How alcohol damages the gastric mucosa has not yet been determined. Studies in both animals and humans have found that alcohol concentrations of 10 percent and more disrupt the gastric mucosal barrier and increase the mucosa’s permeability (Bode and Bode 1992). The changes induced by short-term exposure to alcoholic beverages are rapidly reversible. Prolonged alcohol exposure, however, disturbs the microcirculation and leads to progressive structural mucosal damage.

Several studies have suggested that the decreased formation of hormone-like substances called prostaglandins might play a role in alcohol-induced mucosal injury (Bode et al. 1996). Prostaglandins protect the gastric mucosa from damage by agents such as aspirin that break the gastric mucosal barrier without inhibiting acid secretion. Other studies have indicated that an alcohol-dependent increase in the production of leukotrienes—compounds produced by the immune system that cause allergic and inflammatory reactions—also might contribute to the development of alcohol-induced mucosal injury (Bode and Bode 1992).

Gastric and Intestinal Motility

Alcohol can interfere with the activity of the muscles surrounding the stomach and the small intestine and thus alter the transit time of food through these organs. In humans, alcohol’s effect on gastric motility depends on the alcohol concentration and accompanying meals. In general, beverages with high alcohol concentrations (i.e., above 15 percent) appear to inhibit gastric motility and thus delay the emptying of the stomach. As a result of the increased gastric transit time, bacterial degradation of the food may begin; the resulting gases may lead to feelings of fullness and abdominal discomfort.

In the small intestine, alcohol decreases the muscle movements that help retain the food for further digestion (i.e., the propulsive wave motility). In contrast, alcohol does not affect the movements that propel food through the intestine (i.e., the impeding wave motility) in either alcoholics or healthy subjects. These effects may contribute to the increased sensitivity to foods with a high sugar content (e.g., candy and sweetened juices), shortened transit time, and diarrhea frequently observed in alcoholics (Bode and Bode 1992).

The Small Intestine

As described previously, the small intestine is the organ in which most nutrients are absorbed into the bloodstream. Studies in humans and animals as well as in tissue culture have demonstrated that alcohol can interfere with the absorption of several nutrients. Alcohol itself, however, also is rapidly absorbed in the small intestine. In the human jejunum, for example, the alcohol concentration can drop from 10 percent to just 1.45 percent over a distance of only 30 centimeters (12 inches, about a quarter of the total length of the jejunum) (Bode 1980). Therefore, alcohol’s effects on nutrient absorption may vary throughout the small intestine, and tissue-culture experiments with constant alcohol concentrations may not always reflect the conditions in the body.

Studies in laboratory animals have demonstrated that acute alcohol consumption can inhibit the absorption of water, sodium, glucose, and certain amino acids and fatty acids in the small intestine (Bode 1980; Mezey 1985). Several studies in humans have analyzed the effects of chronic alcohol consumption with the following results:

- Both in healthy people and in alcoholics, chronic alcohol consumption led to markedly reduced water and sodium absorption in the jejunum and ileum (Bode and Bode 1992; Pfeiffer et al. 1992).
- Alcoholics exhibited a reduced absorption of carbohydrates, proteins, and fats in the duodenum, but not in the jejunum (Pfeiffer et al. 1992) (see table).
- Alcoholics without confounding disorders, such as cirrhosis or impaired pancreatic function, exhibited malabsorption of fat and protein (see table).
- Alcoholics showed malabsorption of xylose, a sugar frequently used to study the function of the digestive tract. The proportion of alcoholics who experienced this malabsorption ranged from 18 to 76 percent in various studies (see table). This variation may reflect differences in the nutritional status, the mean daily alcohol intake, or the presence of alcohol-related liver disease among the subjects’ subjects.
- After chronic alcohol consumption, the absorption of thiamine (vitamin B₁), folic acid, and vitamin B₁₂ was either unchanged or decreased (Mezey 1985; Bode and Bode 1992). Folic acid deficiency, which frequently occurs in alcoholics, can result in various disorders of the GI tract as well as in anemia. However, this deficiency is more likely to result from a diet...
Intestinal Mucosal Injury

Intestinal Enzymes

paired absorption disorders.
pancreatic function or advanced liver
disease, digestion of nutrients may be
unclear. In alcoholics with limited
disturbances in alcoholics, however, is
ders in the development of nutritional
sorption of a variety of nutrients. The
enzymes that participate in the metab-
utes from the intestine into the
Alcohol can interfere with the activity
of many enzymes that are essential for
intestinal functioning. One of these
everal enzymes is lactase, which breaks down
the milk sugar lactose; lactase defi-
ient results in lactose intolerance. Alcohol
also interferes with some of the
enzymes involved in transporting
utrients from the intestine into the
bloodstream and inhibits important
enzymes that participate in the metab-
ism of drugs and other foreign or-
ge substances in the gut (for
reviews, see Mezey 1985; Bode 1980).

Intestinal Mucosal Injury

Excessive alcohol consumption fre-
ently causes mucosal damage in the
upper region of the duodenum. Even
in healthy people, a single episode of
heavy drinking can result in duodenal
erosions and bleeding. Animal studies
have indicated that several mecha-
nisms contribute to the development
of these mucosal injuries (Ray et al.
1989) (for a review, see Bode and
Bode 1992). First, alcohol can directly
disturb the integrity of the mucosal
epithelium. Second, alcohol induces
the release of noxious signaling mole-
cules, such as cytokines, histamine,
leukotrienes. These substances
can damage the small blood vessels,
or capillaries, in the intestinal mucosa
and induce blood clotting. Such clot-
ting may lead to an impaired transport
of fluids across the capillaries; fluid
accumulation under the tips of the
villi; and, eventually, destruction of
the tips of the villi. The resulting
lesions allow large molecules, such as
endotoxins and other bacterial toxins,
to enter the bloodstream and the lymph.
Third, as in the stomach, decreased
prostaglandin synthesis may contribute
to changes in the capillaries and to the
development of mucosal injury.

Intestinal Permeability

In animal studies, alcohol administra-
tion increased the permeability of the
intestinal mucosa, allowing large
molecules that normally cannot cross
the intestinal wall intact (e.g., hemo-
globin) to travel between the gut and
the bloodstream (Bode 1980).
Similarly, intestinal permeability was
enhanced in nonintoxicated alcoholics
(Bode and Bode 1992). The enhanced
permeability induced by acute and
chronic alcohol ingestion could allow
toxic compounds, such as endotoxin
and other bacterial toxins, to enter the
bloodstream and subsequently reach the
liver. The presence of endotoxin in
the blood has been documented in
patients with early stages of alcohol-
related liver damage and transiently,
after excessive alcohol consumption,
in people with no evidence of liver
disease (Fukui et al. 1991). Endotoxins
can induce the release of cytokines
(e.g., tumor necrosis factor) and inter-
leukins from certain white blood cells
and from Kupffer cells in the liver.
These cytokines, in turn, may play a
role in the development of alcohol-
related damage to the liver and other
organs (Khoruts et al. 1991; Schäfer et
al. 1995) (figure 3). (For more infor-
mation on the association of endotoxin
and cytokines with liver damage, see
the article by Maher, pp. 5–12.)

Intestinal Bacterial Microflora

Certain bacteria that are a major
source of endotoxin may overgrow
the normal bacterial flora in the je-
junum of alcoholics (Bode and Bode
1992). Together with the altered per-
meability of the gut induced by alco-
hol, this process may allow an increased
escape of endotoxin from the intestine
into the blood vessels leading to the
liver, thus increasing the liver’s expo-
sure to these toxins and, consequent-
ly, the risk of liver injury (figure 3).
The hypothesis that bacterial over-
growth may be responsible for the
development of alcohol-related organ
damage has been supported by the
observation that sterilization of the
intestine prevents alcohol-induced
liver injury in animal experiments
(Adachi et al. 1995).

Summary of Studies on Malabsorption of Carbohydrates, Fat, and Protein in Alcoholics Without Cirrhosis or Obvious Pancreatic Insufficiency

A. Frequency of Abnormal Absorption Among Alcoholics

<table>
<thead>
<tr>
<th>Nutrient Studied</th>
<th>Number of Studies</th>
<th>% Subjects With Abnormal Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Xylose</td>
<td>5</td>
<td>18–76</td>
</tr>
<tr>
<td>Fat*</td>
<td>2</td>
<td>35–56</td>
</tr>
<tr>
<td>Proteinb</td>
<td>1</td>
<td>52</td>
</tr>
</tbody>
</table>

B. Mean Decrease in Absorption Compared With Nonalcoholic Controlsc

<table>
<thead>
<tr>
<th>Nutrient Studied</th>
<th>% Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>45</td>
</tr>
<tr>
<td>Lipids</td>
<td>40</td>
</tr>
<tr>
<td>Protein</td>
<td>81</td>
</tr>
</tbody>
</table>

*a Fat absorption was determined by measuring fat excretion in the feces.
*b Protein absorption was determined by measuring nitrogen excretion in the feces.
c The study measured the absorption of a nutrient solution in the duodenum.

containing insufficient folic acid
than from poor folic acid absorp-
tion (Halstedt and Keen 1990).

In summary, alcohol inhibits ab-
sorption of a variety of nutrients. The
importance of these absorption disor-
ders in the development of nutritional
disturbances in alcoholics, however, is
unclear. In alcoholics with limited
pancreatic function or advanced liver
disease, digestion of nutrients may be
a more significant problem than im-
paired absorption disorders.
The Large Intestine

Until recently, alcohol’s effects on the large intestine had received only minor attention. Studies in dogs found that acute alcohol administration depressed the colon’s impeding motility but enhanced its propulsive motility (Mezey 1985). In healthy humans, alcohol administration also significantly reduced the frequency and strength (i.e., amplitude) of the muscle contractions in a segment of the rectum (Mezey 1985). These effects could reduce the transit time—and thus the compaction—of the intestinal contents and thereby contribute to the diarrhea frequently observed in alcoholics.

Medical Consequences

Alcohol-induced digestive disorders and mucosal damage in the GI tract can cause a variety of medical problems. These include a loss of appetite and a multitude of abdominal complaints, such as nausea, vomiting, feelings of fullness, flatulence, and abdominal pain. Diseases of the liver and pancreas may contribute to and aggravate these complaints. Thus, about 50 percent of alcoholics with an initial stage of liver damage (i.e., fatty liver) and 30 to 80 percent of patients with an advanced stage of alcohol-induced liver injury (i.e., alcoholic hepatitis) report some symptoms of abdominal discomfort (Bode and Bode 1992). These abdominal complaints can lead to reduced food intake, thereby causing the weight loss and malnutrition commonly observed in alcoholics.

In addition to causing abdominal complaints, alcohol plays a role in the development of cancers of the GI tract. It is likely, however, that alcohol does not cause GI-tract cancers by itself but acts in concert with other cancer-inducing agents (i.e., as a cocarcinogen) (for reviews, see Seitz and Simanowski 1988; Garro and Lieber 1990). Alcohol abuse, like smoking, is associated with the development of cancers of the tongue, larynx (i.e., the organ of voice), and pharynx; both alcohol consumption and smoking independently increase the risk for these tumors (Bode 1980).

Epidemiological studies also strongly indicate that chronic alcohol consumption, especially of distilled spirits, markedly contributes to the development of esophageal cancer (Bode 1980; Wienbeck and Berges 1985). Thus, after adjusting for smoking habits, heavy beer drinkers have a 10 times greater risk and heavy whisky drinkers a 25 times greater risk of developing esophageal cancer, compared with people who consume less than 30 g of alcohol (i.e., about 2 standard drinks) daily. The differences between beer and whisky drinkers remain even if they consume the same amount of pure alcohol. In drinkers who also smoke 20 cigarettes or more daily, the risk of esophageal cancer increases about 45-fold (Seitz and Simanowski 1988).

Heavy alcohol consumption also is associated with the development of tumors in the colon and rectum. However, the relative risk of cancer is higher for rectal cancer than for colon cancer. Moreover, the increased risk of rectal cancer appears to result mainly from heavy beer consumption, whereas distilled spirits appear to have no effect.

Summary

Alcohol consumption can interfere with the function of all parts of the gastrointestinal tract. Acute alcohol ingestion induces changes in the motility of the esophagus and stomach that favor gastroesophageal reflux and, probably, the development of reflux esophagitis. Alcohol abuse may lead to damage of the gastric mucosa, including hemorrhagic lesions. Beverages with a low alcohol content stimulate gastric acid secretion, whereas beverages with a high alcohol content do not.

In the small intestine, alcohol inhibits the absorption of numerous nutrients. The importance of these absorption disorders for the development of nutritional disturbances in alcoholics, however, is unclear. In alcoholics with other digestive disorders (e.g., advanced liver disease or impaired pancreatic function), impaired
digestion likely is more significant. Acute alcohol consumption also damages the mucosa in the upper region of the small intestine and may even lead to the destruction of the tips of the villi. The findings of human and animal studies suggest that these mucosal defects favor the following sequence of events: Alcohol-induced mucosal damage in the small intestine increases the mucosa’s permeability, facilitating the transport of large molecules, such as bacterial endotoxin and/or other toxins, into the blood or lymph. This results in the release of potentially toxic cytokines by certain white blood cells and Kupffer cells. These cytokines, in turn, exert multiple injurious effects on membranes and the microcirculation. The result is possible cell damage and even cell death in the liver and other organs.

Motility disorders, maldigestion, and malabsorption in alcoholics can result in digestive problems, such as anorexia, nausea, and abdominal pain. Alcohol abuse also promotes the development of cancers of the tongue, larynx, pharynx, and esophagus. Finally, the results of recent epidemiological studies indicate an association between alcohol consumption and the development of colorectal cancer.

References

Gastrointestinal Tract Disorders

 occurs primarily in the stomach (Gentry et al. 1994) and correlates significantly with gastric ADH activity. However, other investigators have questioned the stomach’s role in first-pass alcohol metabolism (Levitt 1994). The proportion of alcohol eliminated by gastric first-pass metabolism also remains controversial (Sato and Kitamura 1996); compared with hepatic alcohol degradation, gastric first-pass metabolism seems to be quantitatively important only at low alcohol concentrations. In women, first-pass metabolism is less efficient than in men. Consequently, women achieve higher blood alcohol concentrations than men with the same low gastric alcohol concentration because more alcohol passes from a woman’s stomach into the small intestine, where it is absorbed into the bloodstream. Furthermore, gastric first-pass metabolism decreases with long-term alcohol consumption, partly because of diminished ADH activity (Gentry et al. 1994).

A recent study suggests that alcohol also can be metabolized by bacteria residing in the large intestine (Salaspuro 1996). In this pathway, alcohol is transported to the colon via the bloodstream and converted to acetaldehyde by bacterial ADH (see figure). The acetaldehyde subsequently can be metabolized further by the enzyme aldehyde dehydrogenase (ALDH), which is localized in the colonic mucosa or the colonic bacteria. Alternatively, the acetaldehyde can be absorbed into the bloodstream and transported to the liver for further degradation. Because ALDH activity in the colonic mucosa is low, acetaldehyde accumulates in the colon and may even exceed the concentration found in the liver (Salaspuro 1996). These high acetaldehyde levels in the colon may contribute to the development of alcohol-induced diarrhea and—after absorption into the blood—liver injury.

Production

In many animal species, including humans, alcohol is not only degraded but also produced in the GI tract. This alcohol production is a by-product of the bacterial breakdown of ingested carbohydrates. Alcohol also is formed in the human stomach, and in patients with disturbed gastric emptying, the concentrations can be as high as 0.35 percent (i.e., about four times as high as the blood alcohol levels for intoxicated) (Bode and Bode 1992). Two factors favor gastric alcohol production in these patients. First, they produce less gastric acid and thus allow the proliferation of bacteria in the stomach. Second, the patients retain their food in the stomach for an extended period of time. Both factors lead to an increase in the bacterial degradation of nutrients and thus an increase in alcohol production.

—Christiane Bode and J. Christian Bode

References

